Optimization in General and Convex Optimization

Sunghee Yun

Chief Applied Scientist Gauss Labs

Today

- Optimization
 - mathematical optimization problem formulation
 - optimization problem examples
 - solving optimization problems
- Convex Optimization
 - why convex optimization?
 - convex optimization problem examples
 - convex optimization and machine learning
- Duality
 - Lagrangian, Lagrange dual function, dual problem, optimality certificate
 - weak and strong duality
 - duality examples
 - Karush-Kuhn-Tucker (KKT) conditions
 - SVM & KKT

Prerequisite for this talk

This talk will assume the audience

- has been exposed to basic linear algebra and calculus
- knows what function from \mathbf{R}^n to \mathbf{R} , *i.e.*, $f : \mathbf{R}^n \to \mathbf{R}$, means

$$f(x) = f\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \right) = f(x_1, \dots, x_n)$$

• knows what gradient is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}$$

– example: $g: \mathbf{R}^3 \to \mathbf{R}$

$$g(x_1, x_2, x_3) = x_1^2 + 1.2x_2x_3 - 0.5x_1x_3^3 + e^{x_2}$$
$$\nabla g(x) = \begin{bmatrix} 2x_1 - 0.5x_3^3\\ 1.2x_3 + e^{x_2}\\ 1.2x_2 - 1.5x_1x_3^2 \end{bmatrix}$$

• can distinguish componentwise inequality from that for positive semidefiniteness, *i.e.*,

$$Ax \leq b \Leftrightarrow \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} x \leq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \Leftrightarrow a_i^T x \leq b_i \text{ for } i = 1, \dots, m,$$

for
$$A \in \mathbf{R}^{m imes n}$$
, $x \in \mathbf{R}^n$, and $b \in \mathbf{R}^m$

 $\bullet~$ but, for $A\in \mathbf{R}^{n\times n}$

$$A \succeq 0 \Leftrightarrow A = A^T$$
 and $x^T A x \ge 0$ for all $x \in \mathbf{R}^n$
 $A \succ 0 \Leftrightarrow A = A^T$ and $x^T A x > 0$ for all nonzero $x \in \mathbf{R}^n$

Mathematical optimization

• mathematical optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

$$-x = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbf{R}^n$$
 is (vector) optimization variable

-
$$f_0: \mathbf{R}^n \to \mathbf{R}$$
 is objective function

- $f_i : \mathbf{R}^n \to \mathbf{R}$ are inequality constraint functions
- $-h_i: \mathbf{R}^n \to \mathbf{R}$ are equality constraint functions

Optimization problem examples

- circuit optimization
 - optimization variables: transistor widths, resistances, capacitances, inductances
 - objective: operating speed (or equivalently, maximum delay)
 - constraints: area, power consumption
- portfolio optimization
 - optimization variables: amounts invested in different assets
 - objective: expected return, overall risk, return variance
 - constraints: budget

Optimization problem examples

- neural network training
 - optimization variables: neural net weights
 - objective: loss function
 - constraints: network architecture

Solving optimization problems

- for general optimization problems
 - extremely difficult to solve
 - lots of times, impossible to solve, e.g., TSP
 - most methods try to find (good) suboptimal solutions, e.g., using heuristics
- some exceptions: we can solve this problems
 - least-squares (LS), liner program (LP)
 - quadratic program (QP), quadratically constrained quadratic program (QCQP)
 - cone programming (CP), semidefinite programming (SDP)
 - optimization problems for logistic regression, support vector machine (SVM), etc.

What makes them exceptions

- they are convex optimization problems; thus, we can solve them
- what do you mean being able to solve them?

- polynomial-time algorithms exist

- for unconstrained optimization problem
 - * gradient descent method, steepest descent method (first-order methods), Newton's method (second-order method), quasi-Newtons's methods, *e.g.*, BFGS
- for constrained optimization problem
 - * Newton's method with equality constraints, infeasible start Newton method
 - * interior-point methods: barrier method, primal-dual method,
- what do you mean being really able to solve them?
 - can provide **optimality certificate** (or infeasibility certificate)

(BTW, difference between gradient descent and Newton's methods)

- trajectories of two methods for a convex function
- can you guess which one is which?

What is convex optimization?

• convex optimization problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \ i = 1, \dots, m \\ & Ax = b \Leftrightarrow a_j^T x = b_j, \ j = 1, \dots, p \end{array}$$

where

- f_i are convex functions $(i = 0, \ldots, m)$, *i.e.*, for all $x, y \in \mathcal{D}$ and $0 \le \lambda \le 1$,

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

(when f_i are twice differentiable, equivalent to $\nabla^2 f_i(x) \succeq 0$ for all $x \in \mathcal{D}$)

- all equality constraints are linear

General description: convex programming

• convex optimization:

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0, \ i = 1, \dots, m$
 $Ax = b$

where

-
$$f_0(\lambda x + (1 - \lambda)y) \leq \lambda f_0(x) + (1 - \lambda)f_0(y)$$
 for all $x, y \in \mathbb{R}^n$ and $0 \leq \lambda \leq 1$
- $f_i : \mathbb{R}^n \to \mathbb{R}^{k_i}$ are K_i -convex w.r.t. proper cone $K_i \subseteq \mathbb{R}^{k_i}$

- all equality constraints are linear

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems

Algorithms for convex optimization problems

- algorithms
 - classical algorithms like simplex method still work very well for many LPs
 - many state-of-the-art algorithms develoled for large-scale convex optimization problems
 - * barrier methods
 - * primal-dual interior-point methods

Convex optimization example: least-squares (LS)

• LS problem

minimize
$$||Ax - b||_2^2 = \sum_{i=1}^m (a_i^T x - b_i)^2$$

- analytic solution: any solution satisfying $(A^TA)x^* = A^Tb$
- extremely reliable and efficient algorithms
- has been there at least since Gauss
- applications
 - LS problems are easy to recognize
 - has huge number of applications, e.g., line fitting

Convex optimization example: linear programming (LP)

• LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

- no analytic solution
- reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method
- has been there at least since Fourier
- used during World War II
- applications
 - less obvious to recognize (than LS)
 - lots of problems can be cast into LP, e.g., network flow problem

Convex optimization example: quadratic programming (QP)

• QP - assuming
$$P \in \mathbf{S}_{++}^n$$
, *i.e.*, $P \succ 0$

 $\begin{array}{ll} \mbox{minimize} & x^T P x + q^T x \\ \mbox{subject to} & A x \leq b \end{array}$

- no analytic solution

- reliable and efficient algorithms exist, e.g., interiorpoint method
- applications
 - less obvious to recognize (than LP)
 - lots of problems can be cast into QP, *e.g.*, model preditive control (MPC), signal and image processing, optimal portfolio, *etc.*

Convex optimization example: semidefinite programming (SDP)

• SDP

minimize
$$c^T x$$

subject to $F_0 + x_1 F_1 + \dots + x_n F_n \succeq 0$

- again, no analytic solution
- again, reliable and efficient algorithms exist, e.g., interior-point method
- applications
 - never easy to recognize
 - lots of problems, e.g., optimal control theory, can be cast into SDP
 - extremely non-obvious, but convex, hence global optimality easily achieved!

Convex optimization example: max-det problem

• max-det program:

minimize
$$c^T x + \log \det(F_0 + x_1F_1 + \dots + x_nF_n)$$

subject to $G_0 + x_1G_1 + \dots + x_nG_n \succeq 0$
 $F_0 + x_1F_1 + \dots + x_nF_n \succ 0$

- again, no analytic solution
- again, reliable and efficient algorithms exist, e.g., interior-point method
- recent technology
- applications
 - never easy to recognize
 - lots of stochastic optimization problems, e.g., every covariance matrix is positive semidefinite
 - again convex, hence global optimality (relatively) easily achieved!

Properties convex optimization enjoys!

- convex optimization problems can be solved extremely reliably and fast
- a local minimum is a global minimum, which is implied by

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

because Taylor theorem implies

$$f(y) \simeq f(x) + \nabla f(x)^{T} (y - x) + (y - x)^{T} \nabla^{2} f(x) (y - x)/2$$

• nice theoretical property, *e.g.*, self-concordance implies complexity bound with Newton's method

$$\frac{f(x_0) - p^*}{\gamma} + \log_2 \log_2(1/\epsilon)$$

• even better pratical performance!

Mathematical formulation for supervised learning

- given training set, $\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$, where $x^{(i)}\in \mathsf{R}^p$ and $y^{(i)}\in \mathsf{R}^q$
- want to find function $g_{ heta}: \mathbf{R}^p o \mathbf{R}^q$ parameterized by learning parameter, $heta \in \mathbf{R}^n$
 - $g_{\theta}(x)$ desired to be as close as possible to y for future/unseen data $(x,y) \in \mathbf{R}^p imes \mathbf{R}^q$

- i.e.,
$$g_{ heta}(x) \sim y$$

- define a loss function $l: \mathbf{R}^q \times \mathbf{R}^q \to \mathbf{R}_+$
- solve the optimization problem:

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} l(g_{\theta}(x^{(i)}), y^{(i)}) \\ \text{subject to} & \theta \in \Theta \end{array}$$

Linear regression

• (simple) linear regression is a supervised learning problem when

-
$$q = 1$$
, *i.e.*, the output is scalar

$$-g_{\theta}(x) = \theta^{T} \begin{bmatrix} 1\\ x \end{bmatrix} = \theta_{0} + \theta_{1}x_{1} + \dots + \theta_{p}x_{p}, i.e., n = p+1$$

-
$$l: \mathbf{R} imes \mathbf{R} o \mathbf{R}_+$$
 is defined by $l(y_1, y_2) = (y_1 - y_2)^2$

– $\Theta = \mathbf{R}^{p+1}$, *i.e.*, parameter domain is the set of all real numbers

• formulation

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^T \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^2$$

Solution method for linear regression

• linear regression is nothing but LS since

$$\begin{split} mf(\theta) &= \sum_{i=1}^{m} \left(\theta^{T} \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^{2} = \left\| \begin{bmatrix} 1 & x^{(1)^{T}} \\ \vdots & \vdots \\ 1 & x^{(m)^{T}} \end{bmatrix} \theta - \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \right\|_{2}^{2} \\ &= \left\| X\theta - y \right\|_{2}^{2} \end{split}$$

- just another LS problem
- thus, analytic solution exists; solve the normal equation:

$$(X^T X)\theta = X^T y$$

How can we solve linear regression with constraints?

• what if we have one constraint?

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^T \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^2 \\ \text{subject to} & \theta_1 \ge 0 \end{array}$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms can solve it as easily as original problem
- actually, with any number of convex constraints

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^T \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^2 \\ \text{subject to} & h_i(\theta) \leq 0 \text{ for } i = 1, \dots, l \\ & A\theta = b \end{array}$$

How can we solve linear regression with constraints?

• what if we have one constraint?

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^{T} \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^{2} \\ \text{subject to} & \theta_{1} \geq 0 \end{array}$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms can solve it as easily as original problem
- actually, with any number of convex constraints

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^T \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^2 \\ \text{subject to} & h_i(\theta) \leq 0 \text{ for } i = 1, \dots, l \\ & A\theta = b \end{array}$$

How can we solve linear regression with constraints?

• what if we have one constraint?

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^{T} \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^{2} \\ \text{subject to} & \theta_{1} \geq 0 \end{array}$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms can solve it as easily as original problem
- actually, with any number of convex constraints

How can we solve linear regression with constraints?

• what if we have one constraint?

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^T \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^2 \\ \text{subject to} & \theta_1 \ge 0 \end{array}$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms can solve it as easily as original problem
- actually, with any number of convex constraints

$$\begin{array}{ll} \text{minimize} & f(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^T \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^2 \\ \text{subject to} & h_i(\theta) \leq 0 \text{ for } i = 1, \dots, l \\ & A\theta = b \end{array}$$

Ridge regression

• Ridge regression solves the following problem: (for some $\lambda > 0$)

minimize
$$f_0(x) = ||Ax - b||_2^2 + \lambda ||x||_2^2$$

- with regularization to preventing overfitting
- can be reformulated as

minimize
$$f_0(x) = \left\| \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

• yet another LS, hence solve the following normal equation:

$$\begin{bmatrix} A^T & \sqrt{\lambda}I \end{bmatrix} \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} x = (A^T A + \lambda I)x = A^T b$$

Least absolute shrinkage & selection operator (lasso)

• Lasso solves (a problem equivalent to) the following problem:

minimize
$$f_0(x) = ||Ax - b||^2 + \lambda ||x||_1$$

- 1-norm penalty term for parameter selection

- similar to drop-out technique for regularization
- However, the objective function is *not* smooth.
- simple trick resolves this smoothness problem
 - with additional convex inequality constraints and affine equality constraints

minimize
$$f_0(x) = ||Ax - b||^2 + \lambda \sum_{i=1}^n z_i$$

subject to $-z_i \leq x_i \leq z_i, i = 1, \dots, n$

Support vector machine (SVM)

- problem definition:
 - given $x^{(i)} \in \mathbf{R}^p$: input data, and $y^{(i)} \in \{-1,1\}$: output labels
 - find hyperplane which separates two different classes as distinctively as possible (in some measure)
- (typical) formulation:

minimize
$$\|a\|_2^2 + \gamma \sum_{i=1}^m u_i$$

subject to $y^{(i)}(a^T x^{(i)} + b) \ge 1 - u_i, \ i = 1, \dots, m$
 $u \ge 0$

- optimization variables: $a \in \mathbf{R}^n$, $b \in \mathbf{R}$, $u \in \mathbf{R}^m$
- convex optimization problem, hence stable and efficient algorithms exist even for very large problems
- has worked extremely well in practice

SVM using kernels

- use feature transformation $\phi : \mathbf{R}^p \to \mathbf{R}^q$ (with q > p)
- formulation:

minimize
$$\|\tilde{a}\|_2^2 + \gamma \sum_{i=1}^m \tilde{u}_i$$

subject to $y^{(i)}(\tilde{a}^T \phi(x^{(i)}) + \tilde{b}) \ge 1 - \tilde{u}_i, \ i = 1, \dots, m$
 $\tilde{u} \ge 0$

• still convex optimization problem

• graph of a convex function

• graph of a very simple neural network with one hidden layer

- What is wrong with this argument?
- Yes, we should look at error function with respect to *weights*

• graph of a very simple neural network with one hidden layer

- What is wrong with this argument?
- Yes, we should look at error function with respect to weights

• graph of a very simple neural network with one hidden layer

- What is wrong with this argument?
- Yes, we should look at error function with respect to *weights*

• graph of the error function as a function of *weights*

• this is *why* NN's error function is not a convex function in weights (parameters)

Duality

- every (constrained) optimization problem has a *dual problem* (whether or not it's a convex optimization problem)
- every dual problem is a *convex optimization problem* (whether or not it's a convex optimization problem)
- duality provides *optimality certificate*, hence plays *central role* for modern optimization and some machine learning algorithm implementation
- (usually) solving one readily solves the other!

Lagrangian

• standard form problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \ i = 1, \dots, m \\ & h_i(x) = 0, \ i = 1, \dots, p \end{array}$$

where $x \in \mathbf{R}^n$ is optimization variable, \mathcal{D} is domain, p^* is optimal value

• Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with dom $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$ defined by

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- λ_i : Lagrange multiplier associated with $f_i(x) \leq 0$ - ν_i : Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

• Lagrange dual function: $g: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$ defined by

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) = \inf_{x\in\mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

-g is *always* concave

–
$$g(\lambda,
u)$$
 can be $-\infty$

• lower bound property: if $\lambda \succeq 0,$ then $g(\lambda,\nu) \leq p^*$

Sup of convex functions and inf of concave functions

- $\sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$ is convex if $f_{\alpha}(x)$ is convex for all $\alpha \in \mathcal{A}$
- $\inf_{\alpha \in \mathcal{A}} f_{\alpha}(x)$ is concave if $f_{\alpha}(x)$ is concave for all $\alpha \in \mathcal{A}$

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT

Proof

• let $g(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$ where $f_{\alpha}(x)$ is a convex function for all $\alpha \in \mathcal{A}$

• then for any $0 < \lambda < 1$

$$g(\lambda x + (1 - \lambda)y) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(\lambda x + (1 - \lambda)y) \leq \sup_{\alpha \in \mathcal{A}} (\lambda f_{\alpha}(x) + (1 - \lambda)f_{\alpha}(y))$$

$$\leq \sup_{\alpha \in \mathcal{A}} \lambda f_{\alpha}(x) + \sup_{\alpha \in \mathcal{A}} (1 - \lambda)f_{\alpha}(y) = \lambda g(x) + (1 - \lambda)g(y)$$

- thus, g(x) is a convex function
- concavity of the latter can be proved similarly

Why dual function is lower bound for the optimal value?

- you only need middle school math!
- for any (primal) feasible \tilde{x} , any $\lambda \geq 0$, and ν

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) \le L(\tilde{x},\lambda,\nu) = f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$
$$= f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) \le f_0(\tilde{x})$$

because feasibility implies $\lambda_i f_i(\tilde{x}) \leq 0$ $(1 \leq i \leq m)$ and $\nu_i h_i(\tilde{x})$ $(1 \leq i \leq p)$

• thus, for any $\lambda \ge 0$ and ν ,

$$g(\lambda,
u) \leq p^* = \inf_{x\in\mathcal{D}} f_0(x)$$

Dual problem

• Lagrange dual problem:

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$

- convex optimization problem (because $-g(\lambda,
 u)$ is a convex function)
- provides a lower bound on p^{\ast}
- let d^* denote the optimal value for the dual problem
 - week duality: $d^* \leq p^*$
 - strong duality: $d^* = p^*$

Weak duality

- weak duality implies $d^* \leq p^*$

- always true

- provides *nontrivial* lower bounds, especially, for difficult problems, *e.g.*, solving the following SDP:

maximize $-\mathbf{1}^T \nu$ subject to $W + \operatorname{diag}(\nu) \succeq 0$

gives a lower bound for max-cut problem (NP-complete)

 $\begin{array}{ll} \text{minimize} & x^T W x\\ \text{subject to} & x_i^2 = 1, \; i = 1, \ldots, n \end{array}$

Strong duality

- strong duality implies $d^{\ast}=p^{\ast}$
 - not necessarily hold; does not hold in general
 - usually holds for convex optimization problems
 - conditions which guarantee strong duality in convex problems called *constraint qualifications*

Slater's constraint qualification

• strong duality holds for a convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $Ax = b$

- if it is strictly feasible, *i.e.*, there exists $x \in \mathbf{R}^n$ such that

$$f_i(x) < 0, \ i = 1, \dots, m, \ Ax = b$$

- Slater's condition
 - also guarantees the dual optimum is attained (if $p^* > -\infty$)
 - linear inequalities do not need to hold with strict inequalities

Duality example: LP

• primal problem:

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

• dual function:

$$g(\lambda) = \inf_{x} \left(\left(c + A^{T} \lambda \right)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & \text{if } A^{T} \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

• dual problem:

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \geq 0 \end{array}$$

- Slater's condition implies that $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- truth is, $p^* = d^*$ except when both primal and dual are infeasible

Duality example: QP

• primal problem (assuming $P \in \mathbf{S}_{++}^n$):

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & A x \leq b \end{array}$

• dual function:

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (A x - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

• dual problem:

 $\begin{array}{ll} \text{maximize} & -\lambda^T A P^{-1} A^T \lambda / 4 - b^T \lambda \\ \text{subject to} & \lambda \geq 0 \end{array}$

- Slater's condition implies that $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- truth is, $p^* = d^*$ always!

Dual problem provides optimality certificate!

- many algorithms solves the dual problem simultaneously
- (sometimes) Lagrangian dual variables obtained with no additional cost, *e.g.*, barrior method for inequality constrained problems
- if iterative algorithm generates solution sequence,

$$(x^{(1)},\lambda^{(1)},\nu^{(1)}) o (x^{(2)},\lambda^{(2)},\nu^{(2)}) o (x^{(3)},\lambda^{(3)},\nu^{(3)}) o \cdots$$

then, we have an optimality certificate:

$$\begin{split} f(x^{(k)}) &\geq p^* \text{ and } g(\lambda^{(k)}, \nu^{(k)}) \leq p^* \quad \Leftrightarrow \quad f(x^{(k)}) - p^* \leq f(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \\ &\Leftrightarrow \quad g(\lambda^{(k)}, \nu^{(k)}) \leq p^* \leq f(x^{(k)}) \end{split}$$

Optimality certificate with primal and dual paths

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT

Newton's method for analytic centering problem

• each curve corresponds to four different initial points

Figure 10.6 Error $f(x^{(k)}) - p^*$ in Newton's method, applied to an equality constrained analytic centering problem of size p = 100, n = 500. The different curves correspond to four different starting points. Final quadratic convergence is clearly evident.

Figure 10.7 Error $|g(\nu^{(k)}) - p^*|$ in Newton's method, applied to the dual of the equality constrained analytic centering problem.

(Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, NY, USA, 2004.)

test_dual_ascend_with_simple_example

Dual ascend method for QP

test_dual_ascend_with_quad_prob_with_random_eq_cnsts

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT

Complementary slackness

- again, you only need middle school math!
- assume strong dualtiy holds, x^* is primal optimal, and $(\lambda^*,
 u^*)$ is dual optimal

$$\begin{split} f_0(x^*) &= g(\lambda^*, \nu^*) = \inf_{x \in \mathcal{D}} L(x, \lambda^*, \nu^*) \\ &\leq L(x^*, \lambda^*, \nu^*) \\ &= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*) \\ &\leq f_0(x^*) \end{split}$$

because $\lambda^* \ge 0$, $f_i(x^*) \le 0$, and $h_i(x^*) = 0$ • note if $a \le b \le a$, a = b

- thus, all inequalities are tight, *i.e.*, they hold with equalities
 - x^* minimizes $L(x,\lambda^*,\nu^*)$, thus

$$\nabla_x L(x^*, \lambda^*, \nu^*) = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

when the functions are differentiable

-
$$\sum_{i=1}^m \lambda_i^* f_i(x^*) = 0$$
 where $\lambda_i^* f_i(x^*) \ge 0$ for all i , thus

$$\lambda_i^* f_i(x^*) = 0$$
 for all i

known as *complementary slackness*

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0, \quad f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT

59

Karush-Kuhn-Tucker (KKT) conditions

- KKT (optimality) conditions consist of
 - primal feasibility: $f_i(x) \leq 0$ for all $1 \leq i \leq m$, $h_i(x) = 0$ for all $1 \leq i \leq p$
 - dual feasibility: $\lambda \succeq 0$
 - complementary slackness: $\lambda_i f_i(x) = 0$
 - zero gradient of Lagrangian: $\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$
- if strong daulity holds and x^* , λ^* , and ν^* are optimal, they satisfy KKT condtions!

KKT conditions for convex optimization problem

• if \tilde{x} , $\tilde{\lambda}$, and $\tilde{\nu}$ satisfy KKT for convex optimization problem, then they are optimal!

– complementary slackness implies $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

- last conidtion together with convexity implies $g(\tilde{\lambda},\tilde{\nu})=L(\tilde{x},\tilde{\lambda},\tilde{\nu})$
- thus, for example, if Slater's condition is satisfied, x is optimal if and only if there exist $\lambda,\,\nu$ that satisfy KKT conditions
 - Slater's condition implies strong dualtiy, hence dual optimum is attained
 - this generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Dual problem of SVM problem

• optimization problem for SVM:

minimize
$$\begin{array}{ll} \frac{1}{2}\|a\|_2^2 + \gamma \sum_{i=1}^m u_i \\ \text{subject to} & y^{(i)}(a^T x^{(i)} + b) \ge 1 - u_i, \ i = 1, \dots, m \\ & u \ge 0 \end{array}$$

• Lagrangian:

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT

62

• dual function

$$g(\lambda,\nu) = \begin{cases} -\frac{1}{2} \left\| \sum_{i=1}^{m} \lambda_i y^{(i)} x^{(i)} \right\|_2^2 + \sum_{i=1}^{m} \lambda_i & \text{if } \sum_{i=1}^{m} \lambda_i y^{(i)} = 0, \lambda_i + \nu_i = \gamma \\ -\infty & \text{otherwise} \end{cases}$$

• dual problem

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \left\| \sum_{i=1}^{m} \lambda_i y^{(i)} x^{(i)} \right\|_2^2 \\ \text{subject to} & \sum_{i=1}^{m} \lambda_i y^{(i)} = 0 \\ & \lambda_i + \nu_i = \gamma \text{ for } i = 1, \dots, m \end{array}$$

• or equivalently,

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{1 \leq i,j \leq m} \lambda_i \lambda_j y^{(i)} y^{(j)} x^{(i)^T} x^{(j)} \\ \text{subject to} & \sum_{i=1}^{m} \lambda_i y^{(i)} = 0 \\ & \lambda_i + \nu_i = \gamma \text{ for } i = 1, \dots, m \end{array}$$

• yet again, equivalently,

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \lambda^T P \lambda \\ \text{subject to} & \sum_{i=1}^{m} \lambda_i y^{(i)} = 0 \\ & \lambda_i + \nu_i = \gamma \text{ for } i = 1, \dots, m \end{array}$$

where
$$P = X^T X \succeq 0$$
 and $X = \begin{bmatrix} y^{(1)} x^{(1)} & \cdots & y^{(m)} x^{(m)} \end{bmatrix} \in \mathbf{R}^{n \times m}$

• *i.e.*, dual problem is *quadratic program*

KKT conditions for SVM problem

• assume that a^* , b^* , u^* are primal optimal and λ^* and ν^* are dual optimal, then KKT conditions imply

$$\begin{array}{l} - \ y^{(i)}(a^{*T}x^{(i)} + b^{*}) \geq 1 - u_{i}^{*} \ \text{for} \ i = 1, \ldots, m \\ - \ u_{i}^{*} \geq 0, \lambda_{i}^{*} \geq 0, \nu_{i}^{*} \geq 0, \lambda_{i}^{*} + \nu_{i}^{*} = \gamma \ \text{for} \ i = 1, \ldots, m \\ - \ \nu_{i}^{*}u_{i}^{*} = 0 \ \text{for} \ i = 1, \ldots, m \\ - \ \lambda_{i}^{*}(1 - u_{i}^{*} - y^{(i)}(a^{*T}x^{(i)} + b^{*})) = 0 \ \text{for} \ i = 1, \ldots, m \\ - \ \sum_{i=1}^{m} \lambda_{i}^{*}y^{(i)} = 0 \\ - \ a^{*} = \sum_{i=1}^{m} \lambda_{i}^{*}y^{(i)}x^{(i)} \end{array}$$

• $x^{(i)}$ with $\lambda_i^* > 0$ are called *support vectors*!

- those with positive slacks ($u_i^* > 0$), $\lambda_i^* = \gamma$
- those on the edge ($u_i^*=0$), $0<\lambda_i^*\leq\gamma$
- then the boundary can be characterized by $\sum_{i=1}^{m} \lambda_i^* y^{(i)} x^{(i)^T} x + b^*$ - with kernel, the boundary is $\sum_{i=1}^{m} \lambda_i^* y^{(i)} K(x, x^{(i)}) + b^*$

Graphical representation of support vectors

• red circles and crosses indicate the support vectors

Next time

- we can discuss
 - sensitivity analysis using Lagrange dual variables
 - various interpretations for dual problems and dual variables
 - some algorithms for convex optimization, e.g., gradient descent, Newton's method
 - their convergence analysis
 - various applications in approximation, fitting, statistical estimation, geometric problems, etc.

References

- [1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Found. Trends Mach. Learn.*, 3(1):1–122, January 2011.
- [2] Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, New York, NY, USA, 2004.

Thank you! for watching lots of equations during your lunch time. ©