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Today

• Optimization

– mathematical optimization problem formulation

– optimization problem examples

– solving optimization problems

• Convex Optimization

– why convex optimization?

– convex optimization problem examples

– convex optimization and machine learning

• Duality

– Lagrangian, Lagrange dual function, dual problem, optimality certificate

– weak and strong duality

– duality examples

– Karush-Kuhn-Tucker (KKT) conditions

– SVM & KKT
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Prerequisite for this talk

This talk will assume the audience

• has been exposed to basic linear algebra and calculus

• knows what function from Rn to R, i.e., f : Rn → R, means

f(x) = f



x1

x2
...

xn


 = f(x1, . . . , xn)
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• knows what gradient is

∇f(x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)


– example: g : R3 → R

g(x1, x2, x3) = x
2
1 + 1.2x2x3 − 0.5x1x

3
3 + e

x2

∇g(x) =

 2x1 − 0.5x3
3

1.2x3 + ex2

1.2x2 − 1.5x1x
2
3
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• can distinguish componentwise inequality from that for positive semidefiniteness, i.e.,

Ax ≤ b⇔

 aT1
...

aTm

 x ≤
 b1

...

bm

⇔ a
T
i x ≤ bi for i = 1, . . . ,m,

for A ∈ Rm×n, x ∈ Rn, and b ∈ Rm

• but, for A ∈ Rn×n

A � 0⇔ A = A
T

and x
T
Ax ≥ 0 for all x ∈ Rn

A � 0⇔ A = A
T

and x
T
Ax > 0 for all nonzero x ∈ Rn
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Mathematical optimization

• mathematical optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

– x =
[
x1 · · · xn

]T ∈ Rn is (vector) optimization variable

– f0 : Rn → R is objective function

– fi : Rn → R are inequality constraint functions

– hi : Rn → R are equality constraint functions
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Optimization problem examples

• circuit optimization

– optimization variables: transistor widths, resistances, capacitances, inductances

– objective: operating speed (or equivalently, maximum delay)

– constraints: area, power consumption

• portfolio optimization

– optimization variables: amounts invested in different assets

– objective: expected return, overall risk, return variance

– constraints: budget
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Optimization problem examples

• neural network training

– optimization variables: neural net weights

– objective: loss function

– constraints: network architecture
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Solving optimization problems

• for general optimization problems

– extremely difficult to solve

– lots of times, impossible to solve, e.g., TSP

– most methods try to find (good) suboptimal solutions, e.g., using heuristics

• some exceptions: we can solve this problems

– least-squares (LS), liner program (LP)

– quadratic program (QP), quadratically constrained quadratic program (QCQP)

– cone programming (CP), semidefinite programming (SDP)

– optimization problems for logistic regression, support vector machine (SVM), etc.
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What makes them exceptions

• they are convex optimization problems; thus, we can solve them

• what do you mean being able to solve them?

– polynomial-time algorithms exist

– for unconstrained optimization problem

∗ gradient descent method, steepest descent method (first-order methods),

Newton’s method (second-order method), quasi-Newtons’s methods, e.g., BFGS

– for constrained optimization problem

∗ Newton’s method with equality constraints, infeasible start Newton method

∗ interior-point methods: barrier method, primal-dual method,

• what do you mean being really able to solve them?

– can provide optimality certificate (or infeasibility certificate)
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(BTW, difference between gradient descent and Newton’s methods)

• trajectories of two methods for a convex function

• can you guess which one is which?
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What is convex optimization?

• convex optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b⇔ aTj x = bj, j = 1, . . . , p

where

– fi are convex functions (i = 0, . . . ,m), i.e., for all x, y ∈ D and 0 ≤ λ ≤ 1,

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y)

(when fi are twice differentiable, equivalent to ∇2fi(x) � 0 for all x ∈ D)

– all equality constraints are linear
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General description: convex programming

• convex optimization:

minimize f0(x)

subject to fi(x) �Ki 0, i = 1, . . . ,m

Ax = b

where

– f0(λx+ (1−λ)y) ≤ λf0(x) + (1−λ)f0(y) for all x, y ∈ Rn and 0 ≤ λ ≤ 1

– fi : Rn → Rki are Ki-convex w.r.t. proper cone Ki ⊆ Rki

– all equality constraints are linear
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Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• quite a few optimization problems can (actually) be solved

• many engineering and scientific problems can be cast into convex optimization problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on understanding intrinsic property and structure of

all optimization problems
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Algorithms for convex optimization problems

• algorithms

– classical algorithms like simplex method still work very well for many LPs

– many state-of-the-art algorithms develoled for large-scale convex optimization

problems

∗ barrier methods

∗ primal-dual interior-point methods
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Convex optimization example: least-squares (LS)

• LS problem

minimize ‖Ax− b‖2
2 =

∑m
i=1(a

T
i x− bi)

2

– analytic solution: any solution satisfying (ATA)x∗ = ATb

– extremely reliable and efficient algorithms

– has been there at least since Gauss

• applications

– LS problems are easy to recognize

– has huge number of applications, e.g., line fitting
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Convex optimization example: linear programming (LP)

• LP
minimize cTx

subject to Ax ≤ b

– no analytic solution

– reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method

– has been there at least since Fourier

– used during World War II

• applications

– less obvious to recognize (than LS)

– lots of problems can be cast into LP, e.g., network flow problem
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Convex optimization example: quadratic programming (QP)

• QP - assuming P ∈ Sn++, i.e., P � 0

minimize xTPx+ qTx

subject to Ax ≤ b

– no analytic solution

– reliable and efficient algorithms exist, e.g., interiorpoint method

• applications

– less obvious to recognize (than LP)

– lots of problems can be cast into QP, e.g., model preditive control (MPC), signal

and image processing, optimal portfolio, etc.
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Convex optimization example: semidefinite programming (SDP)

• SDP
minimize cTx

subject to F0 + x1F1 + · · ·+ xnFn � 0

– again, no analytic solution

– again, reliable and efficient algorithms exist, e.g., interior-point method

• applications

– never easy to recognize

– lots of problems, e.g., optimal control theory, can be cast into SDP

– extremely non-obvious, but convex, hence global optimality easily achieved!
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Convex optimization example: max-det problem

• max-det program:

minimize cTx+ log det(F0 + x1F1 + · · ·+ xnFn)

subject to G0 + x1G1 + · · ·+ xnGn � 0

F0 + x1F1 + · · ·+ xnFn � 0

– again, no analytic solution

– again, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of stochastic optimization problems, e.g., every covariance matrix is positive

semidefinite

– again convex, hence global optimality (relatively) easily achieved!
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Properties convex optimization enjoys!

• convex optimization problems can be solved extremely reliably and fast

• a local minimum is a global minimum, which is implied by

f(y) ≥ f(x) +∇f(x)
T
(y − x)

because Taylor theorem implies

f(y) ' f(x) +∇f(x)
T
(y − x) + (y − x)

T∇2
f(x)(y − x)/2

• nice theoretical property, e.g., self-concordance implies complexity bound with Newton’s

method

f(x0)− p∗

γ
+ log2 log2(1/ε)

• even better pratical performance!
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Mathematical formulation for supervised learning

• given training set, {(x(1), y(1)), . . . , (x(m), y(m))}, where x(i) ∈ Rp and y(i) ∈ Rq

• want to find function gθ : Rp → Rq parameterized by learning parameter, θ ∈ Rn

– gθ(x) desired to be as close as possible to y for future/unseen data (x, y) ∈ Rp×Rq

– i.e., gθ(x) ∼ y

• define a loss function l : Rq × Rq → R+

• solve the optimization problem:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

subject to θ ∈ Θ
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Linear regression

• (simple) linear regression is a supervised learning problem when

– q = 1, i.e., the output is scalar

– gθ(x) = θT
[

1

x

]
= θ0 + θ1x1 + · · ·+ θpxp, i.e., n = p+ 1

– l : R× R→ R+ is defined by l(y1, y2) = (y1 − y2)
2

– Θ = Rp+1, i.e., parameter domain is the set of all real numbers

• formulation

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2
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Solution method for linear regression

• linear regression is nothing but LS since

mf(θ) =

m∑
i=1

(
θ
T

[
1

x(i)

]
− y(i)

)2

=

∥∥∥∥∥∥∥
 1 x(1)T

... ...

1 x(m)T

 θ −
 y(1)

...

y(m)


∥∥∥∥∥∥∥

2

2

= ‖Xθ − y‖2
2

• just another LS problem

• thus, analytic solution exists; solve the normal equation:

(X
T
X)θ = X

T
y
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How can we solve linear regression with constraints?

• what if we have one constraint?

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2

subject to θ1 ≥ 0

• no analytic solution exists (with only one constraint) in general

• however, convex optimization algorithms can solve it as easily as original problem

• actually, with any number of convex constraints

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2

subject to hi(θ) ≤ 0 for i = 1, . . . , l

Aθ = b
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minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2

subject to θ1 ≥ 0
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• however, convex optimization algorithms can solve it as easily as original problem
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1
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]
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Aθ = b
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Ridge regression

• Ridge regression solves the following problem: (for some λ > 0)

minimize f0(x) = ‖Ax− b‖2
2 + λ‖x‖2

2

– with regularization to preventing overfitting

• can be reformulated as

minimize f0(x) =

∥∥∥∥[ A√
λI

]
x−

[
b

0

]∥∥∥∥2

2

• yet another LS, hence solve the following normal equation:

[
AT

√
λI

] [ A√
λI

]
x = (A

T
A+ λI)x = A

T
b
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Least absolute shrinkage & selection operator (lasso)

• Lasso solves (a problem equivalent to) the following problem:

minimize f0(x) = ‖Ax− b‖2 + λ‖x‖1

– 1-norm penalty term for parameter selection

– similar to drop-out technique for regularization

• However, the objective funtion is not smooth.

• simple trick resolves this smoothness problem

– with additional convex inequality constraints and affine equality constraints

minimize f0(x) = ‖Ax− b‖2 + λ
∑n

i=1 zi
subject to −zi ≤ xi ≤ zi, i = 1, . . . , n
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Support vector machine (SVM)

• problem definition:

– given x(i) ∈ Rp: input data, and y(i) ∈ {−1, 1}: output labels

– find hyperplane which separates two different classes as distinctively as possible (in

some measure)

• (typical) formulation:

minimize ‖a‖2
2 + γ

∑m
i=1 ui

subject to y(i)(aTx(i) + b) ≥ 1− ui, i = 1, . . . ,m

u � 0

– optimization variables: a ∈ Rn, b ∈ R, u ∈ Rm

– convex optimization problem, hence stable and efficient algorithms exist even for

very large problems

– has worked extremely well in practice
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SVM using kernels

• use feature transformation φ : Rp → Rq (with q > p)

• formulation:

minimize ‖ã‖2
2 + γ

∑m
i=1 ũi

subject to y(i)(ãTφ(x(i)) + b̃) ≥ 1− ũi, i = 1, . . . ,m

ũ � 0

• still convex optimization problem
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Why NN is not a convex function?

• graph of a convex function
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Why NN is not a convex function?

• graph of a very simple neural network with one hidden layer

• What is wrong with this argument?

• Yes, we should look at error function with respect to weights

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 38



Sunghee Yun Optimization in General and Convex Optimization

Why NN is not a convex function?

• graph of a very simple neural network with one hidden layer

• What is wrong with this argument?

• Yes, we should look at error function with respect to weights

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 39



Sunghee Yun Optimization in General and Convex Optimization

Why NN is not a convex function?

• graph of a very simple neural network with one hidden layer

• What is wrong with this argument?

• Yes, we should look at error function with respect to weights

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 40



Sunghee Yun Optimization in General and Convex Optimization

Why NN is not a convex function?

• graph of the error function as a function of weights

• this is why NN’s error function is not a convex function in weights (parameters)
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Duality

• every (constrained) optimization problem has a dual problem (whether or not it’s a

convex optimization problem)

• every dual problem is a convex optimization problem (whether or not it’s a convex

optimization problem)

• duality provides optimality certificate, hence plays central role for modern optimization

and some machine learning algorithm implementation

• (usually) solving one readily solves the other!
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Lagrangian

• standard form problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ Rn is optimization variable, D is domain, p∗ is optimal value

• Lagrangian: L : Rn × Rm × Rp → R with domL = D × Rm × Rp defined by

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

– λi: Lagrange multiplier associated with fi(x) ≤ 0

– νi: Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

• Lagrange dual function: g : Rm × Rp → R defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

– g is always concave

– g(λ, ν) can be −∞

• lower bound property: if λ � 0, then g(λ, ν) ≤ p∗
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Sup of convex functions and inf of concave functions

• supα∈A fα(x) is convex if fα(x) is convex for all α ∈ A

• infα∈A fα(x) is concave if fα(x) is concave for all α ∈ A
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Proof

• let g(x) = supα∈A fα(x) where fα(x) is a convex function for all α ∈ A

• then for any 0 < λ < 1

g(λx+ (1− λ)y) = sup
α∈A

fα(λx+ (1− λ)y) ≤ sup
α∈A

(λfα(x) + (1− λ)fα(y))

≤ sup
α∈A

λfα(x) + sup
α∈A

(1− λ)fα(y) = λg(x) + (1− λ)g(y)

• thus, g(x) is a convex function

• concavity of the latter can be proved similarly
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Why dual function is lower bound for the optimal value?

• you only need middle school math!

• for any (primal) feasible x̃, any λ ≥ 0, and ν

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̃, λ, ν) = f0(x̃) +

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃)

= f0(x̃) +

m∑
i=1

λifi(x̃) ≤ f0(x̃)

because feasibility implies λifi(x̃) ≤ 0 (1 ≤ i ≤ m) and νihi(x̃) (1 ≤ i ≤ p)

• thus, for any λ ≥ 0 and ν,

g(λ, ν) ≤ p∗ = inf
x∈D

f0(x)
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Dual problem

• Lagrange dual problem:
maximize g(λ, ν)

subject to λ ≥ 0

– convex optimization problem (because −g(λ, ν) is a convex function)

– provides a lower bound on p∗

• let d∗ denote the optimal value for the dual problem

– week duality: d∗ ≤ p∗

– strong duality: d∗ = p∗
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Weak duality

• weak duality implies d∗ ≤ p∗

– always true

– provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the

following SDP:
maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for max-cut problem (NP-complete)

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n
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Strong duality

• strong duality implies d∗ = p∗

– not necessarily hold; does not hold in general

– usually holds for convex optimization problems

– conditions which guarantee strong duality in convex problems called constraint

qualifications
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Slater’s constraint qualification

• strong duality holds for a convex optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

– if it is strictly feasible, i.e., there exists x ∈ Rn such that

fi(x) < 0, i = 1, . . . ,m, Ax = b

• Slater’s condition

– also guarantees the dual optimum is attained (if p∗ > −∞)

– linear inequalities do not need to hold with strict inequalities
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Duality example: LP

• primal problem:
minimize cTx

subject to Ax ≤ b
• dual function:

g(λ) = inf
x

((
c+ A

T
λ
)T
x− bTλ

)
=

{
−bTλ if ATλ+ c = 0

−∞ otherwise

• dual problem:
maximize −bTλ
subject to ATλ+ c = 0

λ ≥ 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ < b for some x̃

– truth is, p∗ = d∗ except when both primal and dual are infeasible
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Duality example: QP

• primal problem (assuming P ∈ Sn++):

minimize xTPx

subject to Ax ≤ b

• dual function:

g(λ) = inf
x

(
x
T
Px+ λ

T
(Ax− b)

)
= −

1

4
λ
T
AP

−1
A
T
λ− bTλ

• dual problem:
maximize −λTAP−1ATλ/4− bTλ
subject to λ ≥ 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ < b for some x̃

– truth is, p∗ = d∗ always!
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Dual problem provides optimality certificate!

• many algorithms solves the dual problem simultaneously

• (sometimes) Lagrangian dual variables obtained with no additional cost, e.g., barrior

method for inequality constrained problems

• if iterative algorithm generates solution sequence,

(x
(1)
, λ

(1)
, ν

(1)
)→ (x

(2)
, λ

(2)
, ν

(2)
)→ (x

(3)
, λ

(3)
, ν

(3)
)→ · · ·

then, we have an optimality certificate:

f(x
(k)

) ≥ p∗ and g(λ
(k)
, ν

(k)
) ≤ p∗ ⇔ f(x

(k)
)− p∗ ≤ f(x

(k)
)− g(λ(k)

, ν
(k)

)

⇔ g(λ
(k)
, ν

(k)
) ≤ p∗ ≤ f(x

(k)
)
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Optimality certificate with primal and dual paths
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Newton’s method for analytic centering problem

• each curve corresponds to four different initial points

(Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, NY, USA, 2004.)
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Dual ascend method for QP
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Complementary slackness

• again, you only need middle school math!

• assume strong dualtiy holds, x∗ is primal optimal, and (λ∗, ν∗) is dual optimal

f0(x
∗
) = g(λ

∗
, ν
∗
) = inf

x∈D
L(x, λ

∗
, ν
∗
)

≤ L(x
∗
, λ
∗
, ν
∗
)

= f0(x
∗
) +

m∑
i=1

λ
∗
ifi(x

∗
) +

p∑
i=1

ν
∗
i hi(x

∗
)

≤ f0(x
∗
)

because λ∗ ≥ 0, fi(x
∗) ≤ 0, and hi(x

∗) = 0

• note if a ≤ b ≤ a, a = b
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• thus, all inequalities are tight, i.e., they hold with equalities

– x∗ minimizes L(x, λ∗, ν∗), thus

∇xL(x
∗
, λ
∗
, ν
∗
) = ∇f0(x

∗
) +

m∑
i=1

λ
∗
i∇fi(x

∗
) +

p∑
i=1

ν
∗
i∇hi(x

∗
) = 0

when the functions are differentiable

–
∑m

i=1 λ
∗
ifi(x

∗) = 0 where λ∗ifi(x
∗) ≥ 0 for all i, thus

λ
∗
ifi(x

∗
) = 0 for all i

known as complementary slackness

λ
∗
i > 0⇒ fi(x

∗
) = 0, fi(x

∗
) < 0⇒ λ

∗
i = 0
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Karush-Kuhn-Tucker (KKT) conditions

• KKT (optimality) conditions consist of

– primal feasibility: fi(x) ≤ 0 for all 1 ≤ i ≤ m, hi(x) = 0 for all 1 ≤ i ≤ p

– dual feasibility: λ � 0

– complementary slackness: λifi(x) = 0

– zero gradient of Lagrangian: ∇f0(x) +
∑m

i=1 λi∇fi(x) +
∑p

i=1 νi∇hi(x) = 0

• if strong daulity holds and x∗, λ∗, and ν∗ are optimal, they satisfy KKT condtions!
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KKT conditions for convex optimization problem

• if x̃, λ̃, and ν̃ satisfy KKT for convex optimization problem, then they are optimal!

– complementary slackness implies f0(x̃) = L(x̃, λ̃, ν̃)

– last conidtion together with convexity implies g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

• thus, for example, if Slater’s condition is satisfied, x is optimal if and only if there exist

λ, ν that satisfy KKT conditions

– Slater’s condition implies strong dualtiy, hence dual optimum is attained

– this generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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Dual problem of SVM problem

• optimization problem for SVM:

minimize 1
2‖a‖

2
2 + γ

∑m
i=1 ui

subject to y(i)(aTx(i) + b) ≥ 1− ui, i = 1, . . . ,m

u � 0

• Lagrangian:

L(a, b, u, λ, ν)

=
1

2
‖a‖2

2 + γ
m∑
i=1

ui +
m∑
i=1

λi(1− ui − y(i)
(a

T
x

(i)
+ b)) +

m∑
i=1

νi(−ui)

=
1

2
‖a‖2

2 −
(

m∑
i=1

λiy
(i)
x

(i)

)T

a− b
m∑
i=1

λiy
(i)

+

m∑
i=1

ui(γ − λi − νi) +

m∑
i=1

λi
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• dual function

g(λ, ν) =

 −1
2

∥∥∥∑m
i=1 λiy

(i)x(i)
∥∥∥2

2
+
∑m

i=1 λi if
∑m

i=1 λiy
(i) = 0, λi + νi = γ

−∞ otherwise

• dual problem

maximize
∑m

i=1 λi −
1
2

∥∥∥∑m
i=1 λiy

(i)x(i)
∥∥∥2

2

subject to
∑m

i=1 λiy
(i) = 0

λi + νi = γ for i = 1, . . . ,m
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• or equivalently,

maximize
∑m

i=1 λi −
1
2

∑
1≤i,j≤m λiλjy

(i)y(j)x(i)Tx(j)

subject to
∑m

i=1 λiy
(i) = 0

λi + νi = γ for i = 1, . . . ,m

• yet again, equivalently,

maximize
∑m

i=1 λi −
1
2λ

TPλ

subject to
∑m

i=1 λiy
(i) = 0

λi + νi = γ for i = 1, . . . ,m

where P = XTX � 0 and X =
[
y(1)x(1) · · · y(m)x(m)

]
∈ Rn×m

• i.e., dual problem is quadratic program
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KKT conditions for SVM problem

• assume that a∗, b∗, u∗ are primal optimal and λ∗ and ν∗ are dual optimal, then KKT

conditions imply

– y(i)(a∗
T
x(i) + b∗) ≥ 1− u∗i for i = 1, . . . ,m

– u∗i ≥ 0, λ∗i ≥ 0, ν∗i ≥ 0, λ∗i + ν∗i = γ for i = 1, . . . ,m

– ν∗i u
∗
i = 0 for i = 1, . . . ,m

– λ∗i (1− u
∗
i − y

(i)(a∗
T
x(i) + b∗)) = 0 for i = 1, . . . ,m

–
∑m

i=1 λ
∗
iy

(i) = 0

– a∗ =
∑m

i=1 λ
∗
iy

(i)x(i)

• x(i) with λ∗i > 0 are called support vectors!

– those with positive slacks (u∗i > 0), λ∗i = γ

– those on the edge (u∗i = 0), 0 < λ∗i ≤ γ

• then the boundary can be characterized by
∑m

i=1 λ
∗
iy

(i)x(i)Tx+ b∗

– with kernel, the boundary is
∑m

i=1 λ
∗
iy

(i)K(x, x(i)) + b∗
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Graphical representation of support vectors

• red circles and crosses indicate the support vectors
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Next time

• we can discuss

– sensitivity analysis using Lagrange dual variables

– various interpretations for dual problems and dual variables

– some algorithms for convex optimization, e.g., gradient descent, Newton’s method

– their convergence analysis

– various applications in approximation, fitting, statistical estimation, geometric

problems, etc.

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 67



Sunghee Yun Optimization in General and Convex Optimization

References

[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction method

of multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 68



Thank you! for watching lots of equations during your lunch time. ,


