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Prerequisite for this talk

This talk will assume the audience

® has been exposed to basic linear algebra and calculus

e knows what function from R" to R, i.e., f : R" — R, means

L1
i)

f(w):f :f(xla---axn)

Ln
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e knows what gradient is

W
Vf(z)=| %2

-
| ﬁ(az)

— example: g : R®* 5 R

g(x1, T2, T3) = CU? + 1.2x9x35 — 0.5:101:1:2 + "2
2z, — 0.5

Vg(x) = 1.2x3 + €2
1.2z5 — 1.5z175
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e can distinguish componentwise inequality from that for positive semidefiniteness, 1i.e.,

T
Ax < b & : xr < E @a?wﬁbiforizl,...,m,
afl b,

for A e R™" € R", and b € R™

e but, for A € R™*"
A=0< A= A" and 2" Az > 0 for all z € R"

A-0< A=A" and 27 Az > 0 for all nonzero =z € R™
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Mathematical optimization

e mathematical optimization problem:

minimize  fo(x)
subject to  fi(z) <0, i =

|
[ —
S

T . . :
—z=| x z, | € R"is (vector) optimization variable

— fo : R™ — R is objective function

— fi; : R™ — R are inequality constraint functions

— h; : R"™ — R are equality constraint functions
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Optimization problem examples

® circuit optimization

— optimization variables: transistor widths, resistances, capacitances, inductances
— objective: operating speed (or equivalently, maximum delay)

— constraints: area, power consumption
e portfolio optimization

— optimization variables: amounts invested in different assets
— objective: expected return, overall risk, return variance

— constraints: budget

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 6



Sunghee Yun Optimization in General and Convex Optimization

Optimization problem examples

e neural network training

— optimization variables: neural net weights
— objective: loss function

— constraints: network architecture

-,
NN
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Solving optimization problems

e for general optimization problems
— extremely difficult to solve
— lots of times, impossible to solve, e.g., TSP
— most methods try to find (good) suboptimal solutions, e.g., using heuristics
® some exceptions: we can solve this problems
— least-squares (LS), liner program (LP)
— quadratic program (QP), quadratically constrained quadratic program (QCQP)
— cone programming (CP), semidefinite programming (SDP)

— optimization problems for logistic regression, support vector machine (SVM), etc.
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What makes them exceptions

e they are convex optimization problems; thus, we can solve them
e what do you mean being able to solve them?

— polynomial-time algorithms exist

— for unconstrained optimization problem

« gradient descent method, steepest descent method (first-order methods),
Newton’'s method (second-order method), quasi-Newtons's methods, e.g., BFGS

— for constrained optimization problem

* Newton’'s method with equality constraints, infeasible start Newton method

* interior-point methods: barrier method, primal-dual method,
e what do you mean being really able to solve them?

— can provide optimality certificate (or infeasibility certificate)
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(BTW, difference between gradient descent and Newton’s methods)

e trajectories of two methods for a convex function

e can you guess which one is which?
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What is convex optimization?

e convex optimization problem:
minimize  fo(x)
subject to  fi(z) <0, i =1,...,m
Aa:—b<:>a,ac—bj,]—1 P

where

— fi are convex functions (¢ = 0,...,m), i.e.,, forall z,y € Dand 0 < X\ < 1,
fildz + (1 = Ny) < Afi(z) + (1 = A) fi(y)
(when f; are twice differentiable, equivalent to V2 f;(x) = 0 for all z € D)

— all equality constraints are linear
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General description: convex programming

e convex optimization:
minimize  fo(x)
subject to  fi(x) <k; 0, i=1,...,m
Ax = b
where
= fo(Az + (1= AN)y) < Afo(z) + (1 —A)fo(y) forallz,y € R"and 0 < A <1
- fi :R" — R¥i are K;-convex w.r.t. proper cone K; C RFi

— all equality constraints are linear
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Why convex optimization?
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization

e quite a few optimization problems can (actually) be solved
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
e quite a few optimization problems can (actually) be solved

e many engineering and scientific problems can be cast into convex optimization problems
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
e quite a few optimization problems can (actually) be solved
e many engineering and scientific problems can be cast into convex optimization problems

e many more can be approximated to convex optimization
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization

e quite a few optimization problems can (actually) be solved

e many engineering and scientific problems can be cast into convex optimization problems
e many more can be approximated to convex optimization

e convex optimization sheds lights on understanding intrinsic property and structure of
all optimization problems
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Algorithms for convex optimization problems

e algorithms

— classical algorithms like simplex method still work very well for many LPs

— many state-of-the-art algorithms develoled for large-scale convex optimization
problems

* barrier methods

* primal-dual interior-point methods
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Convex optimization example: least-squares (LS)

e LS problem

minimize ||Axz — b||§ = Z;Zl(afﬂﬁ — bz’)2

— analytic solution: any solution satisfying (A’ A)z* = A'b
— extremely reliable and efficient algorithms
— has been there at least since Gauss

e applications

— LS problems are easy to recognize

— has huge number of applications, e.g., line fitting
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Convex optimization example: linear programming (LP)

minimize clx

subjectto Ax < b

— no analytic solution
— reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method
— has been there at least since Fourier

— used during World War Il
e applications

— less obvious to recognize (than LS)

— lots of problems can be cast into LP, e.g., network flow problem
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Convex optimization example: quadratic programming (QP)

® QP -assuming P € S}, i.e., P > O

minimize x! Px + qTa:

subjectto Ax < b

— no analytic solution

— reliable and efficient algorithms exist, e.g., interiorpoint method
e applications

— less obvious to recognize (than LP)

— lots of problems can be cast into QP, e.g., model preditive control (MPC), signal
and image processing, optimal portfolio, etc.
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Convex optimization example: semidefinite programming (SDP)

e SDP

minimize el

subjectto Fo+x1F1+---+x,F,, =0

— again, no analytic solution

— again, reliable and efficient algorithms exist, e.g., interior-point method
e applications

— never easy to recognize
— lots of problems, e.g., optimal control theory, can be cast into SDP

— extremely non-obvious, but convex, hence global optimality easily achieved!
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Convex optimization example: max-det problem

® max-det program:

minimize ¢’ x + log det(Fo + x1F1 + - - - + =, F})
subjectto Go+ x1G1+ -+ x2,G, = 0
Fo+z1F1+---4+x,F, =0

— again, no analytic solution
— again, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize

— lots of stochastic optimization problems, e.g., every covariance matrix is positive
semidefinite

— again convex, hence global optimality (relatively) easily achieved!
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Properties convex optimization enjoys!

e convex optimization problems can be solved extremely reliably and fast
e a local minimum is a global minimum, which is implied by

fy) > f(z) + Vi) (y — =)

because Taylor theorem implies
F(y) = f(2) + V@) (y—2) + (y —2) Vf(2)(y —2)/2

® nice theoretical property, e.g., self-concordance implies complexity bound with Newton's
method

f(xo) — p°
Y

+ log, logy(1/€)

e even better pratical performance!
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Mathematical formulation for supervised learning

e given training set, {(Cb(l), y(l)), e (az(m), y(m))}, where (Y € R? and ¢y € R?

e want to find function gy : R” — RY parameterized by learning parameter, 6 € R"

— gp(x) desired to be as close as possible to y for future/unseen data (x, y) € R” xRY

— d.e., go(x) ~y
e define a loss function [ : R? Xx R? — Ry

e solve the optimization problem:

minimize  f(0) = % S l(gg(az(i)), y(i))
subjectto 6 € ©
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Linear regression

e (simple) linear regression is a supervised learning problem when

— qg = 1, i.e., the output is scalar

1

—ge(x)ZQT[ . } = 0o+ O1x1 + - - + Opxp, de, n =p+1

— 1:R x R = Ry is defined by I(y1,y2) = (y1 — y2)*
- ® =R e, parameter domain is the set of all real numbers

e formulation

2

minimize  f(0) = L >, <9T [ aji) ] _ y(z‘)>
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Solution method for linear regression

e linear regression is nothing but LS since

) 1 ] ney

2
— ||X9 — ?J||2

e just another LS problem

e thus, analytic solution exists; solve the normal equation:

(X"Xx)0 = X"y
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How can we solve linear regression with constraints?

e what if we have one constraint?

2
minimize  f(0) = L >, (9T [ xt) } _ y(z')>

subjectto 61 > 0
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How can we solve linear regression with constraints?

e what if we have one constraint?

1 2

minimize () = L 37 (9T [ L } _ yu))
T

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general
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How can we solve linear regression with constraints?

e what if we have one constraint?

1 2

minimize () = L 37 (9T [ L } _ yu))
T

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general

e however, convex optimization algorithms can solve it as easily as original problem
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How can we solve linear regression with constraints?

e what if we have one constraint?

1 2

minimize () = L 37 (9T [ L } _ yu))
T

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general
e however, convex optimization algorithms can solve it as easily as original problem
e actually, with any number of convex constraints

2
minimize  f(0) = L 27", <9T [ L } _ yu))
x
subject to h;(0) < Ofori=1,...,1
A0 =b
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Ridge regression

e Ridge regression solves the following problem: (for some A > 0)

minimize  fo(x) = ||Ax — ng + >\||CU||§

— with regularization to preventing overfitting

® can be reformulated as

2
2

minimize  fo(z) = ’H \/1%1 }m - [ 8 ]

e yet another LS, hence solve the following normal equation:

[ AT VAT ] [ \/I%I ]x:(ATA+>\I)JJ:ATb
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Least absolute shrinkage & selection operator (lasso)

e Lasso solves (a problem equivalent to) the following problem:
minimize  fo(x) = ||Az — b||* + X||z||1

— 1-norm penalty term for parameter selection
— similar to drop-out technique for regularization

e However, the objective funtion is not smooth.

e simple trick resolves this smoothness problem
— with additional convex inequality constraints and affine equality constraints

minimize  fo(x) = ||[Az —b|P + A D21, 2z
subjectto —z; < zx; <z, 1=1,...,n
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Support vector machine (SVM)

e problem definition:
— given Y € RP: input data, and ¢y € {—1,1}: output labels
— find hyperplane which separates two different classes as distinctively as possible (in
some measure)

e (typical) formulation:

minimize  ||a||3 + v >, w
subject to y(i)(aTa:(i) +b)>1—wu;, t=1,...,m
u >0

— optimization variables: ¢« € R", b € R, u € R™

— convex optimization problem, hence stable and efficient algorithms exist even for
very large problems

— has worked extremely well in practice
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SVM using kernels

e use feature transformation ¢ : R” — R? (with ¢ > p)

e formulation:

minimize  ||a||3 + v > oim, G
subject to  yW(alp(x) +b) >1 -, i=1,...,m
@ >0

e still convex optimization problem

e o
¢
° /o0 .
oo o
) e o
Input Space Feature Space
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Sunghee Yun
Why NN is not a convex function?

e graph of a convex function

—

fix1, x;
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Why NN is not a convex function?

e graph of a very simple neural network with one hidden layer

XOR Gate
OR gate

AND gate

output

NOT AND gate
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Why NN is not a convex function?

e graph of a very simple neural network with one hidden layer

XOR Gate
OR gate

AND gate

output

NOT AND gate

e What is wrong with this argument?
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Why NN is not a convex function?

e graph of a very simple neural network with one hidden layer

XOR Gate
OR gate

output

NOT AND gate

e What is wrong with this argument?
® Yes, we should look at error function with respect to weights
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Sunghee Yun
Why NN is not a convex function?

e graph of the error function as a function of weights

)=y
-yM24N

1

2 (flw, x
2 (AW, x)

i=l

N

I

e this is why NN's error function is not a convex function in weights (parameters)
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Duality

every (constrained) optimization problem has a dual problem (whether or not it's a
convex optimization problem)

every dual problem is a convex optimization problem (whether or not it's a convex
optimization problem)

duality provides optimality certificate, hence plays central role for modern optimization
and some machine learning algorithm implementation

(usually) solving one readily solves the other!
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Lagrangian

e standard form problem:

minimize  fo(x)
subject to fi(x) <0, i=1,...,m

I
[
iS)

where x € R" is optimization variable, D is domain, p* is optimal value
e Lagrangian: L : R" X R™ X R” —+ R with dom L = D x R™ x R? defined by

L(m7 >‘7 V) — fO(x) + Z Azfz(x) -+ Z Vih’i(aj)

— \;: Lagrange multiplier associated with f;(x) < 0
— v;: Lagrange multiplier associated with h;(z) = 0
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Lagrange dual function

e Lagrange dual function: g : R™ X R” — R defined by

g\, v) = inf L(w,\,v) = inf <fo<x> +3 M) + Y vﬂu(w))
=1 1=1

— g is always concave
— g(A\, V) can be —o0

e lower bound property: if A > 0, then g(\,v) < p*
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Sup of convex functions and inf of concave functions

® sup,c4 fo(x) is convex if fo(x) is convex for all o € A

o inf,c4 fo(x) is concave if f,(x) is concave for all & € A

0

1
) &/\%
o
0.0 -75 -5.0 -2.5 0o 25 5.0 s 10 10.0

=1 0 -10.0 =15 5.0 -25 0.0 25 5.0 15

wn

A
=

™~
w

w
¥

IS
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Proof

o let g(x) = sup,c 4 fa(x) where fo(x) is a convex function for all & € A

e thenforany 0 < A <1

gAz + (1 = N)y) = sup fa(Az + (1 = N)y) < Sgg(kfa(w) + (1 = X)) fa(y))
< sup Afa(z) + 823(1 — M) fa(y) = Ag(z) + (1 — N)g(y)

e thus, g(x) is a convex function

e concavity of the latter can be proved similarly
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Why dual function is lower bound for the optimal value?

e you only need middle school math!
e for any (primal) feasible £, any A > 0, and v

g\ v) = inf L(z,\,v) < L(Z, X\ v) = fo(7) + > ONFi(E) + D vihi(E)
1=1 1=1

=  fo(Z) + Z Nifi(Z) < fo(Z)

because feasibility implies A\; f;(Z) < 0 (1 < ¢ < m) and v;h;(Z) (1 <17 < p)
e thus, for any A > 0 and v,

< k — .
g\, v) < p" = inf fo(z)
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Dual problem

e Lagrange dual problem:
maximize  g(A, v)
subjectto A >0

— convex optimization problem (because —g(\, v) is a convex function)

— provides a lower bound on p*

e let d* denote the optimal value for the dual problem
— week duality: d* < p*

— strong duality: d* = p*
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Weak duality

e weak duality implies d* < p*
— always true

— provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the
following SDP:
maximize —1'v
subject to W 4 diag(v) >~ 0

gives a lower bound for max-cut problem (NP-complete)

minimize ='Wz
subject to x?z 1, 2=1,...,n
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Strong duality

*

e strong duality implies d* = p

— not necessarily hold; does not hold in general

— wusually holds for convex optimization problems

— conditions which guarantee strong duality in convex problems called constraint
qualifications
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Slater’s constraint qualification

e strong duality holds for a convex optimization problem:
minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
Ax =0
— if it is strictly feasible, i.e., there exists x € R™ such that

filx) <0,i=1,...,m, Az =b

e Slater’'s condition

— also guarantees the dual optimum is attained (if p* > —o0)

— linear inequalities do not need to hold with strict inequalities
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Duality example: LP

e primal problem:
T

minimize cx
subjectto Ax < b
e dual function:

T T . T o
g(A):inf<(c_|_AT)\> x—bT)\>:{ b\ ifA'XN+c=0

— 00 otherwise

e dual problem:

maximize —b’ \
subject to AT N+ c=0
A>0

— Slater’s condition implies that p* = d* if AZ < b for some &
— truth is, p* = d" except when both primal and dual are infeasible
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Duality example: QP

e primal problem (assuming P € S _):

minimize ! Px
subjectto Ax < b

e dual function:
1
g(A) = inf (acTP:I: + 2T (Az — b)) = —ATAPTIATA — b7

e dual problem:
maximize —A AP 1ATA/4 — b1\
subjectto A >0

— Slater’s condition implies that p* = d* if AZ < b for some &
— truth is, p* = d* always!
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Dual problem provides optimality certificate!

e many algorithms solves the dual problem simultaneously

e (sometimes) Lagrangian dual variables obtained with no additional cost, e.g., barrior
method for inequality constrained problems

e if iterative algorithm generates solution sequence,
(:13(1), )\(1)7 1/(1)) N (a:(2), )\(2)7 1/(2)) N (x(?’), )\(3)’ 1/(3)) .
then, we have an optimality certificate:

f@®) 2 p"and g AW, W) <pt e f@) =" < FEW) = g™
& gAW ) <pt < f'™)

Low Expectation Lunch Meeting: 27-Apr & 4-May-2022 KST - 26-Apr & 3-May-2022 PDT 54



Sunghee Yun Optimization in General and Convex Optimization

Optimality certificate with primal and dual paths

L [ o o) il ‘%WWC’“] /
aln P/ ))CD) v Q\? VA / ’ \./(‘»%7“74/%({@
(} - @(X@,d“’?)
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Newton’s method for analytic centering problem

e each curve corresponds to four different initial points

10°

100

f(@®) —p*

1075 ¢

-10 \ ‘ ‘
107 5 10 15 20
k
Figure 10.6 Error f(z®)) — p* in Newton’s method, applied to an equality
constrained analytic centering problem of size p = 100, n = 500. The
different curves correspond to four different starting points. Final quadratic
convergence is clearly evident.

10°

—10 n N R L
1077 2 4 6 8 10

Figure 10.7 Error |g(v®) — p*| in Newton’s method, applied to the dual of
the equality constrained analytic centering problem.

(Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, NY, USA, 2004.)
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test_dual_ascend_with_quad_prob_with_random_eq_cnsts

20 —— fix™): primal obj
—— g(A¥): dual obj
10
0 .
_10 -
_20 .
T T T T T T
0 20 40 60 80 100
outer iteration
R
— x| — g(A ¥)): optimality certificate
10
10°
101
1072
1073
1074

outer iteration

Optimization in General and Convex Optimization

Dual ascend method for QP

test_dual_ascend_with_simple_example

10 4 —— fix™)): primal obj
—— g(AK): dual obj

5 o
0 -
_5 |
_10 |

T T T T T T

0 20 40 60 80 100
outer iteration

1

10— |fix™)| — g(A¥)): optimality certificate
107 4
10 5
102 —
107 4
10-4é

0 20 40 60 80 100
outer iteration
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Complementary slackness

e again, you only need middle school math!

e assume strong dualtiy holds, =" is primal optimal, and (A™, v™) is dual optimal

fo(z™)

g, v7) = inf L(z, A", v7)

< Lz, A\, v7)

= foz) + D A fil@") + D v hi(a)
1=1 1=1

< fo(z")

because A* > 0, f;(z*) <0, and h;(z*) =0
e noteifa<b<a a=2>
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e thus, all inequalities are tight, 7.e., they hold with equalities

— x" minimizes L(x, \*,v"), thus

m p
VoL(z", X, v") = Vfo(z") + D> A V(@) + D v/Vhi(z") =0
=1 1=1

when the functions are differentiable
— S A fi(2®) = 0 where A fi(x*) > 0 for all 4, thus

A fi(z™) = 0 for all ¢

known as complementary slackness
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Karush-Kuhn-Tucker (KKT) conditions

e KKT (optimality) conditions consist of
— primal feasibility: f;(x) < Oforall1 <7 <m, hi(xz) =0forall 1 <i<p
— dual feasibility: A >~ 0
— complementary slackness: \;f;(x) = 0

— zero gradient of Lagrangian: V fo(z) + >_." MV fi(z) + >0, v;Vhi(z) =0

e if strong daulity holds and =™, A\*, and v™ are optimal, they satisfy KKT condtions!
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KKT conditions for convex optimization problem
e if %, \, and U satisfy KKT for convex optimization problem, then they are optimal!
— complementary slackness implies fo(%) = L(&, X, D)
— last conidtion together with convexity implies 9(5\, v) = L(z, X, D)

e thus, for example, if Slater's condition is satisfied, x is optimal if and only if there exist
A, v that satisfy KKT conditions

— Slater’s condition implies strong dualtiy, hence dual optimum is attained

— this generalizes optimality condition V fo(x) = 0 for unconstrained problem
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Dual problem of SVM problem

e optimization problem for SVM:

minimize  1|lall3 + v >oim, w
subject to y(i)(aT:c(i) +b)>1—wu;, t=1,...,m
u >0

e lLagrangian:

L(a,b,u, \,v)

1 m m p ; m
= Slals+y D uit D M0 —w =y 2 +6) + D wi(—w)
1=1 1=1 1=1
T m m m
= —||a||2 (Z Ay > a—b> Ay + D wily =X —v)+ DN
1=1 1=1 1=1
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e dual function

N

. ~ 12 .
[DREPYRER] D SIS DHIP WL E PR

— 00 otherwise

g\, v) =

e dual problem
2

subject to S Ay =0
Nitvi=~fori=1,...,m

maximize > .0 A — % HZ?; Ny D@

2
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e or equivalently,

maximize ST, \; — %Zlgi,jgm )\i)\jy(z‘)y(j)x(i)Tx(j)
subject to S Ay =0
ANitvi=~fore=1,...,m

e yet again, equivalently,

maximize > A — 2ATPA
subject to > ", Ay =0
Nitvi=~fori=1,...,m

where P = X1 X = 0and X = [ y(l)x(l) y(m)w(m) ] c R™X™

® i.e., dual problem is quadratic program
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KKT conditions for SVM problem

e assume that a™, b*, u™ are primal optimal and A\* and v* are dual optimal, then KKT
conditions imply

— D@2 b)) > 1 —wufori=1,...,m
—u; 20, >0,v;, >0, X\ +v, =yfori=1,...,m
- viu;, =0fori=1,...,m

- A1 —uf —y D@2+ b)) =0fri=1,...,m
- >ty )‘;'ky(z) =0
—a*=3", A;‘y(’)x(’)
o 29 with A; > 0 are called support vectors!
— those with positive slacks (u; > 0), A7 =~
— those on the edge (u; = 0), 0 < A7 < v
e then the boundary can be characterized by > 7", )\;ky(i)a;(i)Tx + b
— with kernel, the boundary is S°7 , X1y WK (x, V) 4 b*
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Graphical representation of support vectors

e red circles and crosses indicate the support vectors
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Next time

e we can discuss
— sensitivity analysis using Lagrange dual variables
— various interpretations for dual problems and dual variables

— some algorithms for convex optimization, e.g., gradient descent, Newton's method

— their convergence analysis

— various applications in approximation, fitting, statistical estimation, geometric
problems, etc.
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Thank yOU ! for watching lots of equations during your lunch time. ©



